The Paradox of Software Quality
Why More Bugs Indicate Better Software?

Audris Mockus

Avaya Labs Research
211 Mt Airy Rd
Basking Ridge, NJ 07920
audris@avaya.com

Nov 7, 2013

Motivation

Are there fundamental time-lag relationships among software production
factors?

Can they be harnessed to improve software development?

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 2/29

Empirical Studies of Software Development

Typical investigated relationships in software, e.g., size and defects
» Are caused by external-to-software factors

» Short term trends: product adoption, extent of usage
» Long term trends: world economy, business practice, technology

» Have unclear mechanism of action

» Typically not usable in practice

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

3/29

Empirical Studies of Software Development

Typical investigated relationships in software, e.g., size and defects
» Are caused by external-to-software factors

» Short term trends: product adoption, extent of usage
» Long term trends: world economy, business practice, technology

» Have unclear mechanism of action

» Typically not usable in practice

Investigating SW evolution — Divining reality from
by observing only software —— shadows on a cave wall

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 3/29

Proposed Solution

» Investigate short-term and recurring relationships with a clear
mechanism originating from the way software is created and used

» Use information from outside software development cave

» Answer actual software engineering questions
» How to to evaluate the effectiveness of QA practices?
> e.g., by comparing two releases of software

» Do easy-to-get measures, e.g., defects, approximate quality?

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 4. /29

Approach

v

Start from clear assumptions

v

Observe fundamental relationships
Validate

Build more complex propositions using validated relationships

v

v

Define: Bug

A user-observed (and reported) program behavior (e.g., failure) that results
in a code change.

Define: Action Will Introduce a Bug
Action will increase the chances of a Bug occurring in the future.

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 5 /29

Assumed background knowledge

Developers create software by making changes to code

» All changes are recorded by a Version Control System

» A release of software is simply a dynamic superposition of changes

Before:

inti =n;
while(i++)
prinf(" %d", i——);

one line deleted
two lines added
two lines unchanged

A. Mockus (Avaya Labs Research)

After:

Quality Paradox

//print n integers

inti = n;
while(i++ && i > 0)
prinf(" %d", i——);

Nov 2013 6 /29

Assumed background knowledge

Developers create software by making changes to code

» All changes are recorded by a Version Control System

» A release of software is simply a dynamic superposition of changes

Before:

inti =n;
while(i4++)
prinf(" %d", i——);

one line deleted
two lines added
two lines unchanged

A. Mockus (Avaya Labs Research)

After:

Quality Paradox

//print n integers

inti = n;
while(i++ && i > 0)
prinf(" %d", i——);

Nov 2013 6 /29

Assumed background knowledge

Developers create software by making changes to code

» All changes are recorded by a Version Control System

» A release of software is simply a dynamic superposition of changes

Before:

inti =n;
while(i4++)
prinf(" %d", i——);

one line deleted

two lines unchanged

A. Mockus (Avaya Labs Research)

After:

Quality Paradox

inti = n;

prinf(" %d", i——);

Nov 2013

Assumed background knowledge

Developers create software by making changes to code

» All changes are recorded by a Version Control System

» A release of software is simply a dynamic superposition of changes

//print n integers

Before: | hile(i++) AR hile(i++ && i > 0)

one line deleted
two lines added

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 6 /29

Assumed background knowledge

Developers create software by making changes to code

» All changes are recorded by a Version Control System

» A release of software is simply a dynamic superposition of changes

//print n integers

inti =n;] inti = n;
Before: | hile(i++) AR hile(i++ && i > 0)
prinf(" %d", i——); prinf(" %d", i——);

one line deleted
two lines added
two lines unchanged

Other attributes: date, developer, defect number,
submit comment: e.g, “Fix bug 3987 - crashing when menu item is
selected”

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 6 /29

First Fundamental Law of Software Evolution
Formulation
Code change will introduce bugs

Mechanism

» New code has defects

» New code exercises existing code differently

» Program behavior changes

Note: platform changes cause code changes

Evidence

» New releases bring new bugs

» Model: a business-driven feature implementation code change leads to
N ~ Poisson(\) fixes with delay T ~ Exp(u) [1]
A. Mockus (Avaya Labs Research)

Quality Paradox Nov 2013 7/29

Model prediction for one release

o
[Te)
4q
z 9
[<5}
=
j
3 S
[<5)
e
[%0]
S
5 8-
=
(&)
= ’ o
3 /
S 9 - s
= e - New feature changes
12 << = « Actual fix changes
- . .
od .a" 7Y * = Predicted fix changes
T T ! T T
2001.0 2001.5 2002.0 2002.5

Calendar Weeks

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 8 /29

Model prediction for 11 releases (using earlier release)

——New feature changes
- - - Actual fix changes

Predicted fix changes

ril

@ 40 %
= 300 ol
& 30- [
D 20- -
= 18’ A [
g [r4
S -
12
> -
< - M
-~ N
& [r3
= 40-
2’ 30-
= ‘
O '8 Qi
> ! 2
= 1
s
O - “
=] m

d Rolo

rl

1994 1996

A. Mockus (Avaya Labs Research)

1998

2000 2002

Calendar Weeks

Quality Paradox

Nov 2013

9/29

Corollary 1: Need to Normalize by Change to Obtain Quality

How to normalize by change?

» Divide by the number of pre-release changes
» Divide by the LOC added or changed

Hypothesis 1

Increase 1T in the number of customer-found defects per
pre-release change (a simple-to-obtain measure) affects
users’ perception of software quality negatively |

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 10 / 29

Qualitative evidence: No

Quotes from a quality manager

“we tried to improve quality: get most experienced team members to
test, do code inspections, conduct root cause analysis, ..."

“Did it work? l.e., is this release better than previous one?”
Everyone uses defect density (e.g.,customer reported defects per 1000

changes or lines of code), but “it does not reflect the feedback from
customers.”

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 11 /29

Let's Peek Outside the Software Development Cave

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 12 / 29

Does the increase in

the number of users and
the amount of usage

introduce bugs?

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

13 /29

Second Fundamental Law of Software Evolution

Formulation
Deploying to more users
will introduce bugs

Mechanism

» New use profiles

» Different environments

Evidence

30

N
a

Release with no users

Post Release

| ol “WMN N ohe JllW"lM\ﬂM‘“

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 14 / 29

has no bugs

MRs per Week Per son Momhs)

Third Fundamental Law of Software Evolution
Formulation
Longer (and heavier) use will introduce bugs

Mechanism

» New inputs and use cases are
encountered over longer periods 010 A< -

» More extreme environmental conditions [0 “M
happen over longer periods oLy 11001

1010101
0101110

Evidence

» Bugs tend to be encountered even after year(s) of usage
» See Commandments below

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 15 / 29

Third Fundamental Law of Software Evolution
Formulation
Longer (and heavier) use will introduce bugs

Mechanism

» New inputs and use cases are
encountered over longer periods

» More extreme environmental conditions
happen over longer periods

Evidence

» Bugs tend to be encountered even after year(s) of usage
» See Commandments below

Does every user and every year of usage introduce the same

number of bugs?
A. Mockus (Avaya Labs Research)

Quality Paradox Nov 2013 15 / 29

Commandment 1: Don't Install Right After the Release Date

Formulation
Users who install close to the release date will
introduce more bugs

Mechanism

» Later users get builds with patches
» Services team understands better how to install/configure properly

» Workarounds for many issues are discovered

Evidence

Fraction of customers observing SW issue

> Quality 1 with time after the launch,
and is an order of magnitude better
one year later [2]

Fraction

00

oo o o oo o8 o
Time (vears) between launch and deployment

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 16 / 29

Commandment 2: Don't Panic After Install/Upgrade

Formulation
A user will introduce more bugs close to their
install/upgrade date

Mechanism

» Software is not hardware: parts do not wear off

» Misconfiguration or incompatibility with the environment

Evidence
8o . . .
g > Two thirds of customer issues (leading
2= to a software fix) are reported within
& o three months of install
2 O
£ > Sample: 87 release/product
S combinations
R
go
L o

1st month from install Three months from install

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 17 / 29

Corollary 1. Customer Quality

Formulation
Software release quality from users perspective is the fraction of:

» The number of users reporting a bug shortly after the installation over

» The number of users who install soon after the release date

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 18 / 29

Corollary 1. Customer Quality

Formulation
Software release quality from users perspective is the fraction of:

» The number of users reporting a bug shortly after the installation over

» The number of users who install soon after the release date

“We live or die by this measure”

VP for quality

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 18 / 29

Testing Hypothesis 1: Defect Density Reflects Customer
Quality

0.15

uanti
0.05 Q t¥).10

=ft= Customer Defects Per Pre—Release change

0.00

ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 19 / 29

Testing Hypothesis 1: Defect Density Reflects Customer
Quality

[Tel
i
S
o
i
Z‘d
z
<
>
o
[Tel
S
S
=== Customer Defects Per Pre—Release Change
=C= % of custmrs with defect within 3m. of install
8
S
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 19 / 29

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

e
L S
— [N
o
)
)
]
]
o
b better
Z‘O
z
<
>
o
[Tel
=
o
-
*C
=== Customer Defects Per Pre—Release Change
= C= 9% of custmrs with defect within 3m. of install
3
o
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

19 / 29

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

e
[Tel
— [N
o
)
)
]
o
— better BQtter
Z‘O
z
<
>
o
[Tel
=
o
-
*C
=== Customer Defects Per Pre—Release Change
= C= 9% of custmrs with defect within 3m. of install
3
o
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

19 / 29

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

e
[Tel
— [N
o
)
)
]
o
b better BQtter worse
Z‘O
z
<
>
o
[Tel
=
o
-
*C
=== Customer Defects Per Pre—Release Change
= C= 9% of custmrs with defect within 3m. of install
3
o
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

19 / 29

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

e
L S
— [N
o
)
)
]
]
o
— better BQtter better
Z‘O
5
=1 et_ter_ « N worse
O -
[Tel
=
o
-
*C
=== Customer Defects Per Pre—Release Change
= C= 9% of custmrs with defect within 3m. of install
3
o
ri.1 ri1.2 ri1.3 r2.0 r2.1 r2.2
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

19 / 29

Testing Hypothesis 1: Defect Density Reflects Customer

Quality

(S
L S
— [N
o
)
)
]
]
o
— better BQtter better
Z‘O
z
S etter, « _ worse worse
& o S
[Tel
=
o A
-
*C
=== Customer Defects Per Pre—Release Change
= C= 9% of custmrs with defect within 3m. of install
8
S
ri.1 ri1.2 r1.3 r2.0 r2.1 r2.2
Pertect @nde-corredaimaon?! Quality Paradox Nov 2013

19 / 29

Trying Another Product

<«
=)

0.5

=j4= Customer Defects Per Pre—Release Change
A = C= Customer Defects/Installed System

0.4

uanti
0.2 Q O.Bty

0.1

0.0

r5 r5.1 r6.0 r7.0 r7.1

Perfect anti-correlation again?!

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 20 / 29

aLickmeni=col
Why customers like high defect density?

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 21 /29

Why customers like high defect density?

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 22 /29

Why customers like high defect density?

Customers don't care about defect density

» Most customers try to avoid bugs
» By not jumping to a major dot zero release

» By not installing immediately when new release is available

Software salesmen don’t care about defect density

» They want their customers to avoid bugs
» By warning about products that are likely to cause problems

Software support people don't care about defect density

» They want their customers to report as few problems as possible
» By delaying wide installation of new releases

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 22 /29

Lemma 1. Major Releases Have Few Customers

Minor releases have two to five times more customers

5
o

4

3

X times m2()re customers

1

Note: based on 38 major and 49 minor releases in 22 products

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 23 /29

Commandment 3
Thou Shell Have a Constant Rate of Customer Issues

Mechanism

» The only thing customers like less than a Bug is

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 24 /29

Commandment 3
Thou Shell Have a Constant Rate of Customer Issues

Mechanism

» The only thing customers like less than a Bug is
» The bug that does not get fixed for a long time

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 24 /29

Commandment 3
Thou Shell Have a Constant Rate of Customer Issues

Mechanism
» The only thing customers like less than a Bug is
» The bug that does not get fixed for a long time

» Team handling customer issues can not expand and collapse
instantaneously and has limited throughput

Evidence

roduct
150

p

Monthly numbers of
new customer issues is
relatively constant

100

Numé;oer of new issues for one

2011-07 2011-12 2012-05 2012-10 2013-03

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 24 /29

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator | Affected systems tay Customer reported
constant defects
]]
Systems nstalled "' Thesize of the rel
Denominator ysh§m7s msfa : in opposite eE:flze 0 h € release
within 7m of G directions ort/Changes
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

25 / 29

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator | Affected systems Stay Customer reported
constant defects
]]
Systems nstalled "' Thesize of the rel
Denominator ysh§m7s msfa : in opposite eE:flze 0 h € release
within 7m of G directions ort/Changes
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

25 / 29

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator | Affected systems Stay Customer reported
constant defects
]]
Systems nstalled "' Thesize of the rel
Denominator ysh§m7s msfa : in opposite eE:flze 0 h € release
within 7m of G directions ort/Changes
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

25 / 29

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator | Affected systems Stay Customer reported
constant defects
]]
Systems nstalled "' Thesize of the rel
Denominator ysh§m7s msfa : in opposite eE:flze 0 h € release
within 7m of G directions ort/Changes
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

25 / 29

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator Affected systems Stay Customer reported
constant defects
I]
Systemsinstalled O The size of the rel
Denominator Ysh,em75 msfa : in opposite eE?;ze 0 h € release
within 7m of G directions ort/Changes
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

25 / 29

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator Affected systems Stay Customer reported
constant defects
]]
Systemsinstalled O Thesize of the rel
Denominator ysh§m7s msfaG: in opposite eEi;zeOh € release
within 7m o directions ort/Changes
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

25 / 29

Law of Minor Release

Formulation

Minor releases have high defect density but low chances
that any given customer will observe a defect

Definition
Major Releases Have More Code Change
Mechanism
cQ Defect Density
Numerator Affected systems Stay Customer reported
constant defects
I I
Systemsinstalled " The size o the el
Denominator ysh§m5|nsfa e in opposite e?;zeoh e release
within 7m of GA directions Effort/Changes
A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013

25 / 29

Discussion

» There exist Laws of Software Evolution, but

» Focus on short-term, repeating relationships with a clear mechanism
» Look outside SW cave to observe them
» Chose practical questions

» Practice hints

» Development process view does not represent customer views
» Maintenance — the most important quality improvement activity

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 26 / 29

References |

@ Audris Mockus, David M. Weiss, and Ping Zhang.
Understanding and predicting effort in software projects.
In 2003 International Conference on Software Engineering, pages 274—284, Portland, Oregon, May 3-10 2003.
ACM Press.

ﬁ Audris Mockus, Ping Zhang, and Paul Li.

Drivers for customer perceived software quality.
In ICSE 2005, pages 225-233, St Louis, Missouri, May 2005. ACM Press.

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 27 / 29

Abstract |

The traditional view of software quality focuses on counting bugs — issues that are observed and reported by users
and implemented as changes to the source code. Fewer bugs intuitively (and obviously) imply higher software
quality. This hasty conclusion, however, ignores complex equilibrium resulting from actions of different groups of
participants in software production: developers, users, support, and sales. For example, users improve software
quality by discovering and reporting defects that are too costly to be discovered otherwise. As new functionality is
delivered in major releases, quality conscious users often stay on the sidelines until a second minor release delivers
properly working features, bug fixes, and stability improvements. The major releases, being of lower quality, have
fewer users and, consequently, fewer bugs. | will discuss several fundamental laws of software production system that
explain this paradox in a quantitative manner. Each law has a clear mechanism of action, is grounded in resource
and physical constraints, and is empirically validated. The laws provide guidelines on how to measure, understand,

and improve quality of software.

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 28 /29

Audris Mockus

Avaya Labs Research

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402
http://mockus.org, mailto:audris@mockus.org

Audris Mockus is interested in quantifying, modeling, and improving software development. He
designs data mining methods to summarize and augment software change data, interactive
visualization techniques to inspect, present, and control the development process, and statistical
models and optimization techniques to understand the relationships among people,
organizations, and characteristics of a software product. Audris Mockus received B.S. and M.S.
in Applied Mathematics from Moscow Institute of Physics and Technology in 1988. In 1991 he
received M.S. and in 1994 he received Ph.D. in Statistics from Carnegie Mellon University. He
works at Avaya Labs Research. Previously he worked in the Software Production Research

Department of Bell Labs.

A. Mockus (Avaya Labs Research) Quality Paradox Nov 2013 29 / 29

