
The Paradox of Software Quality

Why More Bugs Indi
ate Better Software?

Audris Mo
kus

Avaya Labs Resear
h

211 Mt Airy Rd

Basking Ridge, NJ 07920

audris�avaya.
om

Nov 7, 2013



Motivation

Are there fundamental time-lag relationships among software produ
tion

fa
tors?

Can they be harnessed to improve software development?

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 2 / 29



Empiri
al Studies of Software Development

Typi
al investigated relationships in software, e.g., size and defe
ts

◮
Are 
aused by external-to-software fa
tors

◮
Short term trends: produ
t adoption, extent of usage

◮
Long term trends: world e
onomy, business pra
ti
e, te
hnology

◮
Have un
lear me
hanism of a
tion

◮
Typi
ally not usable in pra
ti
e

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 3 / 29



Empiri
al Studies of Software Development

Typi
al investigated relationships in software, e.g., size and defe
ts

◮
Are 
aused by external-to-software fa
tors

◮
Short term trends: produ
t adoption, extent of usage

◮
Long term trends: world e
onomy, business pra
ti
e, te
hnology

◮
Have un
lear me
hanism of a
tion

◮
Typi
ally not usable in pra
ti
e

Investigating SW evolution

by observing only software

≡ Divining reality from

shadows on a 
ave wall

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 3 / 29



Proposed Solution

◮
Investigate short-term and re
urring relationships with a 
lear

me
hanism originating from the way software is 
reated and used

◮
Use information from outside software development 
ave

◮
Answer a
tual software engineering questions

◮
How to to evaluate the e�e
tiveness of QA pra
ti
es?

◮
e.g., by 
omparing two releases of software

◮
Do easy-to-get measures, e.g., defe
ts, approximate quality?

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 4 / 29



Approa
h

◮
Start from 
lear assumptions

◮
Observe fundamental relationships

◮
Validate

◮
Build more 
omplex propositions using validated relationships

De�ne: Bug

A user-observed (and reported) program behavior (e.g., failure) that results

in a 
ode 
hange.

De�ne: A
tion Will Introdu
e a Bug

A
tion will in
rease the 
han
es of a Bug o

urring in the future.

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 5 / 29



Assumed ba
kground knowledge

Developers 
reate software by making 
hanges to 
ode

◮
All 
hanges are re
orded by a Version Control System

◮
A release of software is simply a dynami
 superposition of 
hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines un
hanged

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 6 / 29



Assumed ba
kground knowledge

Developers 
reate software by making 
hanges to 
ode

◮
All 
hanges are re
orded by a Version Control System

◮
A release of software is simply a dynami
 superposition of 
hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines un
hanged

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 6 / 29



Assumed ba
kground knowledge

Developers 
reate software by making 
hanges to 
ode

◮
All 
hanges are re
orded by a Version Control System

◮
A release of software is simply a dynami
 superposition of 
hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines un
hanged

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 6 / 29



Assumed ba
kground knowledge

Developers 
reate software by making 
hanges to 
ode

◮
All 
hanges are re
orded by a Version Control System

◮
A release of software is simply a dynami
 superposition of 
hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines un
hanged

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 6 / 29



Assumed ba
kground knowledge

Developers 
reate software by making 
hanges to 
ode

◮
All 
hanges are re
orded by a Version Control System

◮
A release of software is simply a dynami
 superposition of 
hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines un
hanged

Other attributes: date, developer, defe
t number,

submit 
omment: e.g, �Fix bug 3987 - 
rashing when menu item is

sele
ted�

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 6 / 29



First Fundamental Law of Software Evolution

Formulation

Code 
hange will introdu
e bugs

Me
hanism

◮
New 
ode has defe
ts

◮
New 
ode exer
ises existing 
ode di�erently

◮
Program behavior 
hanges

Note: platform 
hanges 
ause 
ode 
hanges

Eviden
e

◮
New releases bring new bugs

◮
Model: a business-driven feature implementation 
ode 
hange leads to

N ∼ Poisson(λ) �xes with delay T ∼ Exp(µ) [1℄

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 7 / 29



Model predi
tion for one release

2001.0 2001.5 2002.0 2002.5

0
10

20
30

40
50

Calendar Weeks

W
ee

kly
 C

ha
ng

es
 (P

er
so

n 
W

ee
ks

)

New feature changes
Actual fix changes
Predicted fix changes

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 8 / 29



Model predi
tion for 11 releases (using earlier release)

Calendar Weeks

W
ee

kly
 C

ha
ng

es
 (P

er
so

n W
ee

ks
)

0
10
20
30
40

1994 1996 1998 2000 2002

r1 r7

r2

0
10
20
30
40

r8
0

10
20
30
40

r3 r9

r4

0
10
20
30
40

r10
0

10
20
30
40

r5 r11

r6
New feature changes
Actual fix changes
Predicted fix changes

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 9 / 29



Corollary 1: Need to Normalize by Change to Obtain Quality

How to normalize by 
hange?

◮
Divide by the number of pre-release 
hanges

◮
Divide by the LOC added or 
hanged

Hypothesis 1

In
rease ↑ in the number of 
ustomer-found defe
ts per

pre-release 
hange (a simple-to-obtain measure) affe
ts

users' per
eption of software quality negatively ↓

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 10 / 29



Qualitative eviden
e: No

Quotes from a quality manager

�we tried to improve quality: get most experien
ed team members to

test, do 
ode inspe
tions, 
ondu
t root 
ause analysis, ...�

�Did it work? I.e., is this release better than previous one?�

Everyone uses defe
t density (e.g.,
ustomer reported defe
ts per 1000


hanges or lines of 
ode), but �it does not re�e
t the feedba
k from


ustomers.�

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 11 / 29



Let's Peek Outside the Software Development Cave

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 12 / 29



Does the in
rease in

the number of users and

the amount of usage

introdu
e bugs?

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 13 / 29



Se
ond Fundamental Law of Software Evolution

Formulation

Deploying to more users

will introdu
e bugs

Me
hanism

◮
New use pro�les

◮
Di�erent environments

Eviden
e

MR
s p

er 
We

ek
 (P

ers
on

 M
on

ths
)

Post Release

0

5

10

15

20

25

30 V 5.6 V 6.0

Release with no users

has no bugs

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 14 / 29



Third Fundamental Law of Software Evolution

Formulation

Longer (and heavier) use will introdu
e bugs

Me
hanism

◮
New inputs and use 
ases are

en
ountered over longer periods

◮
More extreme environmental 
onditions

happen over longer periods

Eviden
e

◮
Bugs tend to be en
ountered even after year(s) of usage

◮
See Commandments below

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 15 / 29



Third Fundamental Law of Software Evolution

Formulation

Longer (and heavier) use will introdu
e bugs

Me
hanism

◮
New inputs and use 
ases are

en
ountered over longer periods

◮
More extreme environmental 
onditions

happen over longer periods

Eviden
e

◮
Bugs tend to be en
ountered even after year(s) of usage

◮
See Commandments below

Does every user and every year of usage introdu
e the same

number of bugs?

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 15 / 29



Commandment 1: Don't Install Right After the Release Date

Formulation

Users who install 
lose to the release date will

introdu
e more bugs

Me
hanism

◮
Later users get builds with pat
hes

◮
Servi
es team understands better how to install/
on�gure properly

◮
Workarounds for many issues are dis
overed

Eviden
e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

Fraction of customers observing SW issue

Time (years) between launch and deployment

Fr
ac

tio
n

◮
Quality ↑ with time after the laun
h,

and is an order of magnitude better

one year later [2℄

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 16 / 29



Commandment 2: Don't Pani
 After Install/Upgrade

Formulation

A user will introdu
e more bugs 
lose to their

install/upgrade date

Me
hanism

◮
Software is not hardware: parts do not wear o�

◮
Mis
on�guration or in
ompatibility with the environment

Eviden
e

1st month from install Three months from install

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

tio
n 

of
 C

us
to

m
er

 Is
su

es
 E

nc
ou

nt
er

ed

◮
Two thirds of 
ustomer issues (leading

to a software �x) are reported within

three months of install

◮
Sample: 87 release/produ
t


ombinations

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 17 / 29



Corollary 1: Customer Quality

Formulation

Software release quality from users perspe
tive is the fra
tion of:

◮
The number of users reporting a bug shortly after the installation over

◮
The number of users who install soon after the release date

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 18 / 29



Corollary 1: Customer Quality

Formulation

Software release quality from users perspe
tive is the fra
tion of:

◮
The number of users reporting a bug shortly after the installation over

◮
The number of users who install soon after the release date

�We live or die by this measure�

VP for quality

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 18 / 29



Testing Hypothesis 1: Defe
t Density Re�e
ts Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

M Customer Defects Per Pre−Release change

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defe
t Density Re�e
ts Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defe
t Density Re�e
ts Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defe
t Density Re�e
ts Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

better

worse

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defe
t Density Re�e
ts Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

better

worse

worse

better

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defe
t Density Re�e
ts Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

better

worse

worse

better

better

worse

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 19 / 29



Testing Hypothesis 1: Defe
t Density Re�e
ts Customer

Quality

M

M
M

M

M

M

0.
00

0.
05

0.
10

0.
15

Q
ua

nt
ity

C

C

C
C

C

C

r1.1 r1.2 r1.3 r2.0 r2.1 r2.2

L
C

Customer Defects Per Pre−Release Change
% of custmrs with defect within 3m. of install

better

worse

better

worse

worse

better

better

worse

better

worse

Perfe
t anti-
orrelation?!

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 19 / 29



Trying Another Produ
t

M
M

M M

M

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Q
ua

nt
ity

C

C

C

C
C

r5 r5.1 r6.0 r7.0 r7.1

M
C

Customer Defects Per Pre−Release Change
Customer Defects/Installed System

Perfe
t anti-
orrelation again?!

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 20 / 29



Why 
ustomers like high defe
t density?

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 21 / 29



Why 
ustomers like high defe
t density?

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 22 / 29



Why 
ustomers like high defe
t density?

Customers don't 
are about defe
t density

◮
Most 
ustomers try to avoid bugs

◮
By not jumping to a major dot zero release

◮
By not installing immediately when new release is available

Software salesmen don't 
are about defe
t density

◮
They want their 
ustomers to avoid bugs

◮
By warning about produ
ts that are likely to 
ause problems

Software support people don't 
are about defe
t density

◮
They want their 
ustomers to report as few problems as possible

◮
By delaying wide installation of new releases

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 22 / 29



Lemma 1: Major Releases Have Few Customers

Minor releases have two to �ve times more 
ustomers

1
2

3
4

5
X

 t
im

e
s
 m

o
re

 c
u

s
to

m
e

rs

Note: based on 38 major and 49 minor releases in 22 produ
ts

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 23 / 29



Commandment 3

Thou Shell Have a Constant Rate of Customer Issues

Me
hanism

◮
The only thing 
ustomers like less than a Bug is

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 24 / 29



Commandment 3

Thou Shell Have a Constant Rate of Customer Issues

Me
hanism

◮
The only thing 
ustomers like less than a Bug is

◮
The bug that does not get �xed for a long time

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 24 / 29



Commandment 3

Thou Shell Have a Constant Rate of Customer Issues

Me
hanism

◮
The only thing 
ustomers like less than a Bug is

◮
The bug that does not get �xed for a long time

◮
Team handling 
ustomer issues 
an not expand and 
ollapse

instantaneously and has limited throughput

Eviden
e

2011−07 2011−12 2012−05 2012−10 2013−03

Nu
mb

er 
of n

ew
 iss

ues
 for

 on
e p

rod
uct

0
50

100
150

Monthly numbers of

new 
ustomer issues is

relatively 
onstant

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 24 / 29



Law of Minor Release

Formulation

Minor releases have high defe
t density but low 
han
es

that any given 
ustomer will observe a defe
t

De�nition

Major Releases Have More Code Change

Me
hanism

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defe
t density but low 
han
es

that any given 
ustomer will observe a defe
t

De�nition

Major Releases Have More Code Change

Me
hanism

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defe
t density but low 
han
es

that any given 
ustomer will observe a defe
t

De�nition

Major Releases Have More Code Change

Me
hanism

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defe
t density but low 
han
es

that any given 
ustomer will observe a defe
t

De�nition

Major Releases Have More Code Change

Me
hanism

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defe
t density but low 
han
es

that any given 
ustomer will observe a defe
t

De�nition

Major Releases Have More Code Change

Me
hanism

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defe
t density but low 
han
es

that any given 
ustomer will observe a defe
t

De�nition

Major Releases Have More Code Change

Me
hanism

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 25 / 29



Law of Minor Release

Formulation

Minor releases have high defe
t density but low 
han
es

that any given 
ustomer will observe a defe
t

De�nition

Major Releases Have More Code Change

Me
hanism

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 25 / 29



Dis
ussion

◮
There exist Laws of Software Evolution, but

◮
Fo
us on short-term, repeating relationships with a 
lear me
hanism

◮
Look outside SW 
ave to observe them

◮
Chose pra
ti
al questions

◮
Pra
ti
e hints

◮
Development pro
ess view does not represent 
ustomer views

◮
Maintenan
e � the most important quality improvement a
tivity

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 26 / 29



Referen
es I

Audris Mo
kus, David M. Weiss, and Ping Zhang.

Understanding and predi
ting e�ort in software proje
ts.

In 2003 International Conferen
e on Software Engineering, pages 274�284, Portland, Oregon, May 3-10 2003.

ACM Press.

Audris Mo
kus, Ping Zhang, and Paul Li.

Drivers for 
ustomer per
eived software quality.

In ICSE 2005, pages 225�233, St Louis, Missouri, May 2005. ACM Press.

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 27 / 29



Abstra
t I

The traditional view of software quality fo
uses on 
ounting bugs � issues that are observed and reported by users

and implemented as 
hanges to the sour
e 
ode. Fewer bugs intuitively (and obviously) imply higher software

quality. This hasty 
on
lusion, however, ignores 
omplex equilibrium resulting from a
tions of di�erent groups of

parti
ipants in software produ
tion: developers, users, support, and sales. For example, users improve software

quality by dis
overing and reporting defe
ts that are too 
ostly to be dis
overed otherwise. As new fun
tionality is

delivered in major releases, quality 
ons
ious users often stay on the sidelines until a se
ond minor release delivers

properly working features, bug �xes, and stability improvements. The major releases, being of lower quality, have

fewer users and, 
onsequently, fewer bugs. I will dis
uss several fundamental laws of software produ
tion system that

explain this paradox in a quantitative manner. Ea
h law has a 
lear me
hanism of a
tion, is grounded in resour
e

and physi
al 
onstraints, and is empiri
ally validated. The laws provide guidelines on how to measure, understand,

and improve quality of software.

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 28 / 29



Audris Mo
kus

Avaya Labs Resear
h

233 Mt. Airy Road

Basking Ridge, NJ 07920

ph: +1 908 696 5608, fax:+1 908 696 5402

http://mo
kus.org, mailto:audris�mo
kus.org

Audris Mo
kus is interested in quantifying, modeling, and improving software development. He

designs data mining methods to summarize and augment software 
hange data, intera
tive

visualization te
hniques to inspe
t, present, and 
ontrol the development pro
ess, and statisti
al

models and optimization te
hniques to understand the relationships among people,

organizations, and 
hara
teristi
s of a software produ
t. Audris Mo
kus re
eived B.S. and M.S.

in Applied Mathemati
s from Mos
ow Institute of Physi
s and Te
hnology in 1988. In 1991 he

re
eived M.S. and in 1994 he re
eived Ph.D. in Statisti
s from Carnegie Mellon University. He

works at Avaya Labs Resear
h. Previously he worked in the Software Produ
tion Resear
h

Department of Bell Labs.

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 29 / 29


