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Motivation

Are there fundamental time-lag relationships among software produ
tion

fa
tors?

Can they be harnessed to improve software development?
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Empiri
al Studies of Software Development

Typi
al investigated relationships in software, e.g., size and defe
ts

◮
Are 
aused by external-to-software fa
tors

◮
Short term trends: produ
t adoption, extent of usage

◮
Long term trends: world e
onomy, business pra
ti
e, te
hnology

◮
Have un
lear me
hanism of a
tion

◮
Typi
ally not usable in pra
ti
e
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Investigating SW evolution

by observing only software

≡ Divining reality from

shadows on a 
ave wall
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Proposed Solution

◮
Investigate short-term and re
urring relationships with a 
lear

me
hanism originating from the way software is 
reated and used

◮
Use information from outside software development 
ave

◮
Answer a
tual software engineering questions

◮
How to to evaluate the e�e
tiveness of QA pra
ti
es?

◮
e.g., by 
omparing two releases of software

◮
Do easy-to-get measures, e.g., defe
ts, approximate quality?

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 4 / 29



Approa
h

◮
Start from 
lear assumptions

◮
Observe fundamental relationships

◮
Validate

◮
Build more 
omplex propositions using validated relationships

De�ne: Bug

A user-observed (and reported) program behavior (e.g., failure) that results

in a 
ode 
hange.

De�ne: A
tion Will Introdu
e a Bug

A
tion will in
rease the 
han
es of a Bug o

urring in the future.
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Assumed ba
kground knowledge

Developers 
reate software by making 
hanges to 
ode

◮
All 
hanges are re
orded by a Version Control System

◮
A release of software is simply a dynami
 superposition of 
hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines un
hanged
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orded by a Version Control System

◮
A release of software is simply a dynami
 superposition of 
hanges

Before:

int i = n;

while(i++)

prinf(" %d", i−−);

After:

//print n integers

int i = n;

while(i++ && i > 0)

prinf(" %d", i−−);

one line deleted

two lines added

two lines un
hanged

Other attributes: date, developer, defe
t number,

submit 
omment: e.g, �Fix bug 3987 - 
rashing when menu item is

sele
ted�
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First Fundamental Law of Software Evolution

Formulation

Code 
hange will introdu
e bugs

Me
hanism

◮
New 
ode has defe
ts

◮
New 
ode exer
ises existing 
ode di�erently

◮
Program behavior 
hanges

Note: platform 
hanges 
ause 
ode 
hanges

Eviden
e

◮
New releases bring new bugs

◮
Model: a business-driven feature implementation 
ode 
hange leads to

N ∼ Poisson(λ) �xes with delay T ∼ Exp(µ) [1℄
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Model predi
tion for one release
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Predicted fix changes
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Model predi
tion for 11 releases (using earlier release)
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Corollary 1: Need to Normalize by Change to Obtain Quality

How to normalize by 
hange?

◮
Divide by the number of pre-release 
hanges

◮
Divide by the LOC added or 
hanged

Hypothesis 1

In
rease ↑ in the number of 
ustomer-found defe
ts per

pre-release 
hange (a simple-to-obtain measure) affe
ts

users' per
eption of software quality negatively ↓
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Qualitative eviden
e: No

Quotes from a quality manager

�we tried to improve quality: get most experien
ed team members to

test, do 
ode inspe
tions, 
ondu
t root 
ause analysis, ...�

�Did it work? I.e., is this release better than previous one?�

Everyone uses defe
t density (e.g.,
ustomer reported defe
ts per 1000


hanges or lines of 
ode), but �it does not re�e
t the feedba
k from


ustomers.�

A. Mo
kus (Avaya Labs Resear
h) Quality Paradox Nov 2013 11 / 29



Let's Peek Outside the Software Development Cave
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Does the in
rease in

the number of users and

the amount of usage

introdu
e bugs?
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Se
ond Fundamental Law of Software Evolution

Formulation

Deploying to more users

will introdu
e bugs

Me
hanism

◮
New use pro�les

◮
Di�erent environments

Eviden
e

MR
s p

er 
We

ek
 (P

ers
on

 M
on

ths
)

Post Release

0
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10

15

20

25

30 V 5.6 V 6.0

Release with no users

has no bugs
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Third Fundamental Law of Software Evolution

Formulation

Longer (and heavier) use will introdu
e bugs

Me
hanism

◮
New inputs and use 
ases are

en
ountered over longer periods

◮
More extreme environmental 
onditions

happen over longer periods

Eviden
e

◮
Bugs tend to be en
ountered even after year(s) of usage

◮
See Commandments below
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◮
More extreme environmental 
onditions

happen over longer periods

Eviden
e

◮
Bugs tend to be en
ountered even after year(s) of usage

◮
See Commandments below

Does every user and every year of usage introdu
e the same

number of bugs?
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Commandment 1: Don't Install Right After the Release Date

Formulation

Users who install 
lose to the release date will

introdu
e more bugs

Me
hanism

◮
Later users get builds with pat
hes

◮
Servi
es team understands better how to install/
on�gure properly

◮
Workarounds for many issues are dis
overed

Eviden
e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

Fraction of customers observing SW issue

Time (years) between launch and deployment

Fr
ac

tio
n

◮
Quality ↑ with time after the laun
h,

and is an order of magnitude better

one year later [2℄
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Commandment 2: Don't Pani
 After Install/Upgrade

Formulation

A user will introdu
e more bugs 
lose to their

install/upgrade date

Me
hanism

◮
Software is not hardware: parts do not wear o�

◮
Mis
on�guration or in
ompatibility with the environment

Eviden
e

1st month from install Three months from install

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fr
ac

tio
n 

of
 C

us
to

m
er

 Is
su

es
 E

nc
ou

nt
er

ed

◮
Two thirds of 
ustomer issues (leading

to a software �x) are reported within

three months of install

◮
Sample: 87 release/produ
t


ombinations
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Corollary 1: Customer Quality

Formulation

Software release quality from users perspe
tive is the fra
tion of:

◮
The number of users reporting a bug shortly after the installation over

◮
The number of users who install soon after the release date
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Corollary 1: Customer Quality

Formulation

Software release quality from users perspe
tive is the fra
tion of:

◮
The number of users reporting a bug shortly after the installation over

◮
The number of users who install soon after the release date

�We live or die by this measure�

VP for quality
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Testing Hypothesis 1: Defe
t Density Re�e
ts Customer

Quality
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t anti-
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Trying Another Produ
t
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Perfe
t anti-
orrelation again?!
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Why 
ustomers like high defe
t density?
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Why 
ustomers like high defe
t density?

Customers don't 
are about defe
t density

◮
Most 
ustomers try to avoid bugs

◮
By not jumping to a major dot zero release

◮
By not installing immediately when new release is available

Software salesmen don't 
are about defe
t density

◮
They want their 
ustomers to avoid bugs

◮
By warning about produ
ts that are likely to 
ause problems

Software support people don't 
are about defe
t density

◮
They want their 
ustomers to report as few problems as possible

◮
By delaying wide installation of new releases
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Lemma 1: Major Releases Have Few Customers

Minor releases have two to �ve times more 
ustomers

1
2

3
4

5
X

 t
im

e
s
 m

o
re

 c
u

s
to

m
e

rs

Note: based on 38 major and 49 minor releases in 22 produ
ts
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Commandment 3

Thou Shell Have a Constant Rate of Customer Issues

Me
hanism

◮
The only thing 
ustomers like less than a Bug is
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Commandment 3

Thou Shell Have a Constant Rate of Customer Issues

Me
hanism

◮
The only thing 
ustomers like less than a Bug is

◮
The bug that does not get �xed for a long time

◮
Team handling 
ustomer issues 
an not expand and 
ollapse

instantaneously and has limited throughput

Eviden
e
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e p
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Monthly numbers of
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ustomer issues is
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onstant
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Law of Minor Release

Formulation

Minor releases have high defe
t density but low 
han
es

that any given 
ustomer will observe a defe
t

De�nition

Major Releases Have More Code Change

Me
hanism
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Dis
ussion

◮
There exist Laws of Software Evolution, but

◮
Fo
us on short-term, repeating relationships with a 
lear me
hanism

◮
Look outside SW 
ave to observe them

◮
Chose pra
ti
al questions

◮
Pra
ti
e hints

◮
Development pro
ess view does not represent 
ustomer views

◮
Maintenan
e � the most important quality improvement a
tivity
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Abstra
t I

The traditional view of software quality fo
uses on 
ounting bugs � issues that are observed and reported by users

and implemented as 
hanges to the sour
e 
ode. Fewer bugs intuitively (and obviously) imply higher software

quality. This hasty 
on
lusion, however, ignores 
omplex equilibrium resulting from a
tions of di�erent groups of

parti
ipants in software produ
tion: developers, users, support, and sales. For example, users improve software

quality by dis
overing and reporting defe
ts that are too 
ostly to be dis
overed otherwise. As new fun
tionality is

delivered in major releases, quality 
ons
ious users often stay on the sidelines until a se
ond minor release delivers

properly working features, bug �xes, and stability improvements. The major releases, being of lower quality, have

fewer users and, 
onsequently, fewer bugs. I will dis
uss several fundamental laws of software produ
tion system that

explain this paradox in a quantitative manner. Ea
h law has a 
lear me
hanism of a
tion, is grounded in resour
e

and physi
al 
onstraints, and is empiri
ally validated. The laws provide guidelines on how to measure, understand,

and improve quality of software.
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